Reconfigurable Memristor and CNFET based Four Quadrant Multiplier for Low Power Applications
نویسندگان
چکیده
In this paper, a reconfigurable, low power four quadrant memristor and carbon nanotube field effect Transistor (CNFET) based analog multiplier is proposed. The circuit is verified by extensive HSPICE simulations using experimentally verified memristor and Stanford CNFET models that have been calibrated for 90% accuracy at the 32nm technology node. The proposed multiplier has an input range of ±0.25V, extremely large bandwidth of 30.5 GHz, and consumes just 43.8μW of power along with low total harmonic distortion (THD% ≤0.75) and significant noise suppression at a supply voltage of ±0.3V.
منابع مشابه
A low power high bandwidth four quadrant analog multiplier in 32 nm CNFET technology
Carbon Nanotube Field Effect Transistor (CNFET) is a promising new technology that overcomes several limitations of traditional silicon integrated circuit technology. In recent years, the potential of CNFET for analog circuit applications has been explored. This paper proposes a novel four quadrant analog multiplier design using CNFETs. The simulation based on 32nm CNFET technology shows that t...
متن کاملVoltage Differencing Buffered Amplifier based Voltage Mode Four Quadrant Analog Multiplier and its Applications
In this paper a voltage mode four quadrant analog multiplier (FQAM) using voltage differencing buffered amplifier (VDBA) based on quarter square algebraic identity is presented. In the proposed FQAM the passive resistor can be implemented using MOSFETs operating in saturationregion thereby making it suitable for integration. The effect of non idealities of VDBA has also been analyzed in this pa...
متن کاملThe Effect of DTMOS Transistors on the Performance of a Memristor-based Ternary CAM Cell in Low Power Applications
This paper proposes the use of DTMOS transistors in a memristor-based ternary CAM (MTCAM) instead of MOSFET transistors. It also evaluates the effect of forward body biasing methods in DTMOS transistors on the performance of a MTCAM cell in write mode. These biasing methods are gate-to-body tying (called DT1), drain-to-body tying (called DT2), and gate-to-body tying with a voltage supply of 0.1...
متن کاملA Low Power Full Adder Cell based on Carbon Nanotube FET for Arithmetic Units
In this paper, a full adder cell based on majority function using Carbon-Nanotube Field-Effect Transistor (CNFET) technology is presented. CNFETs possess considerable features that lead to their wide usage in digital circuits design. For the design of the cell input capacitors and inverters are used. These kinds of design method cause a high degree of regularity and simplicity. The proposed des...
متن کاملLow-Power Four-Quadrant Multiplier Using Dual-Gate Transistors
Abstract A four-quadrant analog multiplier using a novel type of GaAs transistor is presented. This device, called 2-D MESFET, is dedicated to low power and high speed applications[1],[2]. A special architecture for the multiplier was designed by taking advantage of the dual-gate structure of the 2-D MESFET. The circuit relies on the square algebraic identity [8], with the squaring operation re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017